Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzamide oxime

Shu-Qing Xu and Jia-Ming Li*

Laboratory of Beibu Gulf Marine Protection and Exploitation, Department of Chemistry and Biology, Qinzhou University, Qinzhou, Guangxi 535000, People's Republic of China

Correspondence e-mail: ljmmarise@163.com

Received 22 May 2008; accepted 5 July 2008

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.146; data-to-parameter ratio = 13.2.

In the crystal structure of the title compound, $C_7H_8N_2O$, molecules are connected *via* intermolecular $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds to form a two-dimensional supramolecular structure. The oxime group has an *E* configuration and the dihedral angle between the mean planes of the benzene ring and the amidoxime grouping is 20.2 (3)°.

Related literature

For related literature, see: Bruton *et al.* (2003); Kang *et al.* (2007); Li *et al.* (2007); Srivastava *et al.* (1997); Wang *et al.* (2006, 2007); Bertolasi *et al.* (1982); Chertanova *et al.* (1994); Goel *et al.* (1981); Xing, Ding *et al.* (2007); Xing, Wang *et al.* (2007).

Experimental

Crystal data $C_7H_8N_2O$ $M_r = 136.15$ Monoclinic, $P2_1/c$ a = 12.579 (2) Å b = 5.053 (1) Å c = 10.908 (2) Å $\beta = 90.380$ (7)°

 $V = 693.3 (2) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 273 (2) K $0.28 \times 0.22 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.975, T_{\rm max} = 0.984$ 4489 measured reflections 1216 independent reflections 967 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.145$ S = 1.041216 reflections

92 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.21$ e Å⁻³ $\Delta \rho_{min} = -0.22$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots N2^i$	0.82	2.10	2.820 (2)	147
$N1-H1A\cdotsO1^{ii}$	0.86	2.29	3.031 (2)	145

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{5}{2}$.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by a grant from the Qinzhou University Foundation of Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 2007XJ15).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2131).

References

- Bertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502-511.
- Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruton, E. A., Brammer, L., Pigge, F. C., Aakeröy, C. B. & Leinend, D. S. (2003). New J. Chem. 27, 1084–1094.
- Chertanova, L., Pascard, C. & Sheremetev, A. (1994). Acta Cryst. B**50**, 708–716.
- Goel, A. B., Goel, S. & Vanderveer, D. (1981). Inorg. Chim. Acta, 54, L5–L6.Kang, S.-S., Wang, H.-B., Zeng, H.-S. & Li, H.-L. (2007). Acta Cryst. E63, 03279.
- Li, H.-L., Zeng, H.-S., Kang, S.-S. & Wang, H.-B. (2007). Acta Cryst. E63, 04763.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Srivastava, R. M., Brinn, I. M., Machuca-Herrera, J. O., Faria, H. B., Carpenter, G. B., Andrade, D., Venkatesh, C. G. & Morais, L. P. F. (1997). J. Mol. Struct. 406, 159–167.
- Wang, H.-B., Xing, Z.-T., Ding, W.-L., Jun, Y. & Wang, P.-L. (2007). Acta Cryst. E63, 01834–01835.
- Wang, H.-B., Yan, X.-C. & Liu, Z.-Q. (2006). Acta Cryst. E62, 04243-04244.
- Xing, Z.-T., Ding, W.-L., Wang, H.-B., Jun, Y. & Han, F. (2007). Acta Cryst. E63, o1019–o1020.
- Xing, Z.-T., Wang, H.-B., Jun, Y., Wu, W.-Y. & Han, F. (2007). Acta Cryst. E63, 02236–02237.

supplementary materials

Acta Cryst. (2008). E64, o1469 [doi:10.1107/S1600536808020813]

Benzamide oxime

S.-Q. Xu and J.-M. Li

Comment

The synthesis of Schiff base complexes containing oxime (-C=N—OH) functional groups has attracted great interest due to their antiviral, anticancer and antibacterial activities (Srivastava *et al.*, 1997; Goel *et al.*, 1981; Li *et al.*, 2007; Wang *et al.*, 2007; Xing, Ding *et al.* (2007), Xing, Wang *et al.* (2007). Also, the interesting hydrogen-bond systems in the crystal structures of oximes have been analysed and a correlation between the pattern of hydrogen bonding and N—O bond lengths has been suggested (Bertolasi *et al.*, 1982; Bruton *et al.*, 2003). Herein, we report the synthesis and crystal structure of the title compound, (I). In the crystal structure of the title compound, molecules are connected *via* intermolecular N—H···O and O—H···N hydrogen bonds (see Table 1 and Fig. 2) to form a two-dimensional supramolecular structure. The oxime group has an E configuration [C4—C9—N1—O3 = -179.43 (14) °, Chertanova *et al.*, 1994] and the dihedral angle between the mean planes of the benzene ring and the C7/N1/N2/O grouping is 20.2 (3) °, which is less than that reported for similar structures by Kang *et al.* (2007) and Xing, Ding *et al.* (2007), Xing, Wang *et al.* (2007).

Experimental

Reagents and solvents used were of commercially available quality. The Schiff base ligand benzamidoxime was synthesized according to the method of Kang *et al.* (2007). A mixture of benzonitrile (0.33 mol) and hydroxylamine hydrochloride (0.33 mol) in ethanol (231 ml) and potassium carbonate (0.33 mol) in water (66 ml) was refluxed for 12 h. After cooling and filtering, compound (I) was obtained. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 A (for NH), O—H = 0.82 Å (for OH) and C—H = 0.93 Å for aromatic H atoms, and constrained to ride on their parent atoms, with $U_{iso}(H) = xUeq(C,N,O)$, where x = 1.5 for OH H, and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of I showing the atom numbering scheme with displacement ellipsoids at the 30% probability level.

Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.

 $F_{000} = 288$

 $\theta = 2.5-27.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 273 (2) KBlock, colorless $0.28 \times 0.22 \times 0.18 \text{ mm}$

 $D_{\rm x} = 1.304 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$

Cell parameters from 1198 reflections

Benzamide oxime

Data collection

Bruker SMART CCD area-detector diffractometer	1216 independent reflections
Radiation source: fine-focus sealed tube	967 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
T = 273(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 14$
$T_{\min} = 0.975, T_{\max} = 0.984$	$k = -6 \rightarrow 6$
4489 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.145$	$w = 1/[\sigma^2(F_o^2) + (0.0753P)^2 + 0.2452P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
1216 reflections	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
92 parameters	$\Delta \rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.50237 (11)	0.1813 (3)	1.12339 (12)	0.0523 (4)
H1	0.4578	0.0750	1.0990	0.078*
N2	0.58736 (13)	0.1959 (3)	1.03730 (14)	0.0453 (5)
C7	0.63885 (14)	0.4152 (4)	1.05147 (16)	0.0391 (5)
N1	0.61721 (14)	0.5943 (3)	1.13971 (15)	0.0508 (5)
H1A	0.5666	0.5653	1.1906	0.061*
H1B	0.6540	0.7373	1.1450	0.061*
C1	0.72942 (14)	0.4640 (4)	0.96838 (17)	0.0411 (5)
C5	0.8218 (2)	0.3813 (6)	0.7814 (2)	0.0710 (7)
H5	0.8256	0.2908	0.7073	0.085*
C6	0.73762 (19)	0.3377 (5)	0.8576 (2)	0.0643 (7)
H6	0.6847	0.2195	0.8337	0.077*
C2	0.8089 (2)	0.6386 (6)	0.9997 (3)	0.0781 (8)
H2	0.8062	0.7276	1.0742	0.094*
C4	0.89920 (19)	0.5537 (5)	0.8122 (2)	0.0674 (7)
H4	0.9560	0.5839	0.7599	0.081*
C3	0.8926 (2)	0.6829 (7)	0.9215 (3)	0.0962 (11)
H3	0.9455	0.8027	0.9437	0.115*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0545 (9)	0.0537 (9)	0.0488 (8)	-0.0083 (6)	0.0195 (7)	0.0020 (6)
N2	0.0477 (9)	0.0438 (10)	0.0445 (9)	-0.0035 (7)	0.0130 (7)	0.0000 (7)
C7	0.0435 (10)	0.0375 (10)	0.0364 (9)	0.0027 (8)	0.0008 (7)	0.0041 (7)
N1	0.0609 (11)	0.0444 (10)	0.0471 (9)	-0.0028 (8)	0.0116 (8)	-0.0054 (8)
C1	0.0427 (10)	0.0376 (10)	0.0429 (10)	0.0011 (8)	0.0024 (8)	0.0036 (8)
C5	0.0705 (15)	0.0845 (18)	0.0583 (13)	-0.0135 (13)	0.0222 (12)	-0.0124 (13)
C6	0.0606 (13)	0.0763 (16)	0.0562 (13)	-0.0226 (12)	0.0151 (10)	-0.0164 (12)
C2	0.0739 (16)	0.0848 (19)	0.0757 (16)	-0.0334 (14)	0.0208 (13)	-0.0281 (14)
C4	0.0543 (13)	0.0735 (16)	0.0747 (16)	-0.0065 (12)	0.0226 (11)	0.0063 (13)

supplementary materials

C3	0.0763 (18)	0.108 (2)	0.105 (2)	-0.0503 (18)	0.0278 (16)	-0.0271 (19)
Geometric p	arameters (Å, °)					
01—N2		1.430 (2)	С5—	-C4	1.34	48 (4)
01—H1		0.8200	C5–	-C6	1.36	58 (3)
N2—C7		1.292 (2)	C5–	-H5	0.93	300
C7—N1		1.350 (2)	C6–	-H6	0.93	300
C7—C1		1.481 (3)	C2-	-C3	1.37	78 (4)
N1—H1A		0.8600	C2-	-H2	0.93	300
N1—H1B		0.8600	C4—	-C3	1.36	52 (4)
C1—C6		1.371 (3)	C4—	-H4	0.93	300
C1—C2		1.375 (3)	С3—	-H3	0.93	300
N2-01-H1	l	109.5	С6—	-C5—H5	119	.6
C7—N2—O1		109.99 (15)	С5—	-C6C1	121	.6 (2)
N2-C7-N1		123.82 (17)	С5—	-С6—Н6	119	.2
N2-C7-C1		117.16 (16)	C1-	-С6—Н6	119	.2
N1-C7-C1		118.97 (17)	C1-	-C2-C3	120	.5 (2)
C7—N1—H1	А	120.0	C1-	-С2—Н2	119	.7
C7—N1—H1	В	120.0	C3-	-С2—Н2	119	.7
H1A—N1—I	H1B	120.0	C5–	-C4—C3	118	.7 (2)
C6-C1-C2		117.3 (2)	C5–	-C4—H4	120	.7
C6—C1—C7		121.63 (18)	C3–	-C4—H4	120	.7
C2—C1—C7		121.06 (18)	C4	-C3-C2	121	.0 (2)
C4—C5—C6		120.9 (2)	C4-	-С3—Н3	119	.5
С4—С5—Н5	;	119.6	C2-	-С3—Н3	119	.5
01—N2—C7	/—N1	3.2 (2)	C2-	-C1C6C5	0.5	(4)
O1—N2—C7	/—C1	-179.43 (14)	С7—	-C1-C6-C5	-17	9.5 (2)
N2-C7-C1	—C6	21.8 (3)	C6-	-C1-C2-C3	0.2	(4)
N1-C7-C1	—C6	-160.7 (2)	С7—	-C1-C2-C3	-17	9.8 (3)
N2-C7-C1	—C2	-158.2 (2)	C6-	-C5—C4—C3	0.5	(5)
N1-C7-C1	—C2	19.3 (3)	C5-	-C4—C3—C2	0.2	(5)
C4—C5—C6	—C1	-0.9 (4)	C1-	-C2C3C4	-0.5	5 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$	
O1—H1···N2 ⁱ	0.82	2.10	2.820 (2)	147	
N1—H1A····O1 ⁱⁱ	0.86	2.29	3.031 (2)	145	
Symmetry codes: (i) $-x+1$, $-y$, $-z+2$; (ii) $-x+1$, $y+1/2$, $-z+5/2$.					

